Photon-number resolution with Transition-Edge Sensors

<u>Federico Malnati^{1,2}, Mauro Rajteri¹</u>

2) Politecnico di Torino

Roma, 7th February 2025

www.inrim.it

(1)

Our group at INRiM

Italy's National Metrology Institute in Turin

Innovative Cryogenic Detectors Laboratory

Researcher

PhD student

Federico Malnati

2

PhD student

INRiM facilities for TESs

Thermal evaporation of Au ,Ti. Depositions in rapid sequence.

TES Au(30) Ti(15) Si

Characterization

3

F. Malnati – Photon-number resolution with Transition-Edge Sensors

wiring

 SiN_x

STAR: project overview

Array of single photon detectors based on: superconducting transition-edge sensors (TESs)

Requirements:

- > Resolving power of 4 (for precise photon-number discrimination)
- > Response time < 1 μ s
- Detection quantum efficiency > 90%

Technology:

- Tuning TESs critical temperature using proximity effect
- Antireflection coating and optical cavity for maximizing QE

Transition-Edge Sensors

• TES: detector that exploit the strongly **temperaturedependent resistance** of the superconducting phase transition occurring at critical temperature T_c

5

TES working principle

TES working principle

NGICA

Some Figures of Merit

9

Ti 15 nm Au 30 nm

📕 Au 30 nm

Speeding up TESs

TiAu TES with a T_C = 123 mK and **two** gold pads

10

 $G = 654 \pm 5 \text{ pW/K}$

Speeding up TESs

TiAu TES with a T_C=123 mK and **two** gold pads

 $G = 654 \pm 5 \text{ pW/K}$

11

TiAu TES with **one** gold pad \rightarrow G = 413 ± 5 pW/K (-37%) and MDR \simeq 470 kHz

High efficiency TES layout

• Enhancing TES detection efficiency

 $12\times12~\mu m^2$ and $60\times60~\mu m^2$ TiAuTi TESs + AR

12

Recent developments

NQS'

Preliminary results

$60\times 60~\mu m^2$ TiAuTi TES + AR

Variable [unit]	Value	Uncertainty	Contribution
Wavelength λ [m]	6.90e-07	5e-09	0.006145
Repetition rate ν [Hz]	3.125e+04	-	-
Free air/fibre interface η	3.7e-02	-	-
BS ratio λ	2.30e-03	1e-05	0.004667
Optical path attenuation Γ	3.70e-04	5e-06	0.012120
Photodiode power <i>P</i> [W]	1.98e-08	5e-10	0.022935
μ_{TES} [from Poissonian fit]	1.65e+00	1e-02	0.005670

SDE (690 nm) = $85 \pm 3\%$

为你们的你们的你们的你们的你们的你们的事实的你的?""你们还是你的你们。"

14

 \square

- **Reduce TES response time of about 20%**
- Enhance detection efficiency to reach 90%
- New 4-oxide AR coating Simulations show SDE > 90%
- Fabricate a prototype array of TESs

15

Thanks for your attention

Cryogenic setup

- Low-temperature setup: pulse-tube cryocooler + ADR 3 K < 100 mK
- Stages at different temperatures (60 K, 3 K, 500 mK, 30 mK)

TES and

SQUID box

- * 4-wire measurements: R vs T
- ✤ Single-photon counting with SQUID

* An optical fibre is aligned to the TES active area and glued

