

Spokes 6 & 7

From Integration to Complete Quantum Systems

Activities on the **SUPERCONDUCTING PLATFORM**

Federica Mantegazzini

Fondazione Bruno Kessler (Trento)

UMIB: M. Borghesi, G. Bosi, P. Carniti, S. Cecchi, M. Faverzani, A. Nucciotti, V. Vadalà, S. Vichi; FBK: F. Ahrens, P. Falferi, A. Irace, F. Mantegazzini; CNR: C. Bonavolontà, Y. Chen, V. Di Meo, E. Esposito, M. Lisitskiy, G. Panaccione, B. Ruggiero, M. Salluzzo, S. Castrignano, M. Lisitskiy, I. Ricciardi INFN: E. Chyhyrynets, S. Garbolino, C. Gatti, L. Piersanti, C. Pira, C. Puglia, S. Tocci; LEONARDO: M. Proietti

Second NQSTI Congress Rome, 5-7 February 2025

UNIVERSITÀ DI PAVIA

BICOCCA

SUPERCONDUCTING PLATFORM in Spoke 6-7

Different devices and systems...

Superconducting Parametric Amplifiers

Travelling Wave Parametric Amplifiers (TWPAs)

 Josephson Parametric Amplifiers (JPAs) Tunable resonators

• Kinetic inductance-based current-sensitive resonators

Josephson junction-based tunable resonators

Superconducting qubits

• 2D architectures

• 3D architectures

Unconventional superconducting platforms

• SQN devices

 Topological-superconducting systems: Josephson 2D lattices

F. Mantegazzini – FBK fmantegazzini@fbk.eu

SUPERCONDUCTING PLATFORM in Spoke 6-7

Different devices and systems...

Superconducting Parametric Amplifiers

Travelling Wave Parametric Amplifiers (TWPAs)

 Josephson Parametric Amplifiers (JPAs)

Tunable resonators

 Kinetic inductance-based current-sensitive resonators

Josephson junction-based tunable resonators

Superconducting qubits

• 2D architectures

Unconventional superconducting platforms

• SQN devices

 Topological-superconducting systems: Josephson 2D lattices

SUPERCONDUCTING PLATFORM in Spoke 6-7

Different devices and systems...

Superconducting Parametric Amplifiers

Travelling Wave Parametric Amplifiers (TWPAs)

 Josephson Parametric Amplifiers (JPAs)

Tunable resonators

• Kinetic inductance-based current-sensitive resonators

Josephson junction-based tunable resonators

Superconducting qubits

• 2D architectures

• 3D architectures

Unconventional superconducting platforms

• SQN devices

 Topological-superconducting systems: Josephson 2D lattices

F. Mantegazzini – FBK fmantegazzini@fbk.ee

SUPERCONDUCTING PLATFORM in Spoke 6-7

Different devices and systems...

Superconducting Parametric Amplifiers

Travelling Wave Parametric Amplifiers (TWPAs)

 Josephson Parametric Amplifiers (JPAs)

Tunable resonators

• Kinetic inductance-based current-sensitive resonators

Josephson junction-based tunable resonators

Superconducting qubits

• 2D architectures

• 3D architectures

Unconventional superconducting platforms

• SQN devices

 Topological-superconducting systems: Josephson 2D lattices

SUPERCONDUCTING PLATFORM in Spoke 6-7

... for different applications

Superconducting Parametric Amplifiers

 High-fidelity multiplexed dispersive read-out

 Sources of entangled microwave photons

Tunable resonators

Multiplexed microwave read-out

Transmon qubits

Universal quantum gates

Unconventional superconducting platforms

Quantum networks

Second NQSTI Congress Rome, 5-7 February 2025

SUPERCONDUCTING PLATFORM in Spoke 6-7

... for different applications

Superconducting Parametric Amplifiers

 High-fidelity multiplexed dispersive read-out

 Sources of entangled microwave photons **Tunable resonators**

Multiplexed microwave read-out

Transmon qubits

Universal quantum gates

Unconventional superconducting platforms

Quantum networks

SUPERCONDUCTING PLATFORM in Spoke 6-7

... for different applications

Superconducting Parametric Amplifiers

 High-fidelity multiplexed dispersive read-out

 Sources of entangled microwave photons **Tunable resonators**

Multiplexed microwave read-out

Transmon qubits

Universal quantum gates

Unconventional superconducting platforms

Quantum networks

Second NQSTI Congress Rome, 5-7 February 2025

SUPERCONDUCTING PLATFORM in Spoke 6-7

... for different applications

Superconducting Parametric Amplifiers

 High-fidelity multiplexed dispersive read-out

 Sources of entangled microwave photons **Tunable resonators**

Multiplexed microwave read-out

Transmon qubits

Universal quantum gates

Unconventional superconducting platforms

Quantum networks

F. Mantegazzini – FBK fmantegazzini@fbk.eu

SUPERCONDUCTING PLATFORM in Spoke 6-7

... for different applications

Rome, 5-7 February 202

12

We are successfully following **two far-reaching directions**

Acquire technological expertise as basis to build a complete supply chain for superconducting QT Create scientific excellence as basis for <u>research and innovation</u> for fundamental science and quantum applications

We are successfully following **two far-reaching directions**

Acquire technological expertise as basis to build a complete supply chain for superconducting QT Create scientific <u>excellence</u> as basis for <u>research and innovation</u> for fundamental science and

quantum applications

 \sim

~

FONDAZIONE BRUNO KESSLEF

BICOCCA

INFN

An example of *integration & complete systems* towards a supply chain The first superconducting qubit #madeinItaly and beyond

FBK Cleanrooms

Second NQSTI Congress

An example of *integration & complete systems* towards a supply chain The first superconducting qubit #madeinItaly and beyond BICOCCA INFN Fixed frequency **Development & Microfabrication Design & Microfabrication** . . Action transmon qubit of planar transmon qubits of Josephson junctions Talk by A. Irace **BUILDING BLOCKS INTEGRATION** Tunable Resonator transmon qubit Resonator **Drive line** FBK Cleanrooms QU- PILOT Flux line LÍSS

Second NQSTI Congress Rome, 5-7 February 2025

BICOCC

An example of *integration* & *complete systems* towards a supply chain The first superconducting qubit #madeinItaly and beyond

Second NQSTI Congress Rome, 5-7 February 2025

Second NQSTI Congress Rome, 5-7 February 2025

Second NQSTI Congress Rome, 5-7 February 2025

SUPERCONDUCTING PLATFORM in Spoke 6-7

Synergies with other Spokes and NQSTI partners

We are successfully following **two far-reaching directions**

Acquire <u>technological expertise</u> as basis to build a <u>complete supply chain</u> for superconducting QT

Create scientific excellence as basis for <u>research and innovation</u> for fundamental science and quantum applications

A novel device: **Microwave photon energy lifter**

A device to shift the frequency of microwave photons and to create a synthetic frequency lattice Input pulse Output pulse Resonant or

Travellingwave device blue shifted

Enrico Bogoni (PhD student) Marcello Faggionato (Master student) Benno Margesin (Senior fellow) Federica Mantegazzini (Researcher) Nicolò Crescini (Researcher) Alessandro Irace (PhD student) Felix Ahrens (Researcher)

PhD students with Uni Milano Bicocca Supervisors: Andrea Giachero, Angelo

6

Nucciotti DEGLI STUDI BICOCCĂ

Other experimentalists in Trento: Andrea Vinante, Renato Mezzena, Paolo Falferi

Theoretical study: Gianluca Rastelli, Iacopo Carusotto

7

Development

FONDAZIONE BRUNO KESSLER BICOCCA

INFN

A novel device: Microwave photon energy lifter

BUILDING BLOCKS

Overlap Al/AlOx/Al Josephson junctions

Al superconducting coplanar waveguide **resonators**

F. Mantegazzini – FBK fmantegazzini@fbk.eu

FONDAZIONE BRUNO KESSLER BICOCCÃ

INFN

F

Talk by F. Ahrens

A novel device: **Microwave photon energy lifter**

Working principle

 \Rightarrow Experimental demonstration of tunable frequency shifting

A novel device: **Microwave photon energy lifter**

Applications & Impact

Fundamental physics

- Synthetic lattice in the frequency space
- Bloch oscillation dynamics

⇒ Platform for condensed matter physics

Pulse control

- Shift frequency of microwave photons
- Further development: pulse shape preservation
- \Rightarrow Platform for pulse control for quantum computing

$$\omega_{\rm in}/2\pi \qquad a = 0.16\,{\rm V}$$

- One publication in review *Physical Review Letters*
- One publication in preparation *Nature Electronics*
- One patent submitted and one patent in preparation

Development chain of superconducting quantum devices & systems

Second NQSTI Congress Rome, 5-7 February 2025

26