## Qibo: an open-source hybrid quantum operating system

Full-stack middleware for self-hosted and cloud-based quantum devices

Stefano Carrazza,*on behalf of the QNIX and Qibo teams*<sup>†</sup> <sup>†</sup>https://qibo.science

#### Congresso Nazionale NQSTI 2025

Roma, February 5-7, 2025

#### **References:**

Qibocal: arXiv:2410.00101 Qibolab: Quantum 8 (2024) 1247. doi:10.22331/q-2024-02-12-1247. Qibojit: Quantum 6 (2022) 814. doi:10.22331/q-2022-09-22-814. Qibo: Quantum Science and Technology 7 (1) (2021) 015018. doi: 10.1088/2058-9565/ac39f5.

### Software and Quantum Computing



#### Simulation

- required to develop algorithms
- complete introspection
- require noise modeling

### Hardware

- limited (in many senses)
- requires calibration
- final validation

### The real-world...



### Software challenges

Requirements for self-hosted quantum hardware:

• Access to interdisciplinary set of software tools for:



• Open-source software tools supported by benchmarks and publications.

## Towards the "Linux of Quantum Computers"

## Qibo Collaborators (January 2025): +50 code contributors



### Qibo's macrostructure (v0.2.15)



5

### On-going quantum applications using Qibo



## **Quantum Classical Simulation**

### Classical quantum simulation benchmarks

arXiv:2203.08826



### **Major features:**

- Exact state-vector simulation.
- Just-in-time compilation.
- Supports CPU, GPU and multi-GPU.
- NVIDIA and AMD GPUs support.
- Reduced memory footprint.
- Optional cuQuantum integration.

### Qibo vs other libraries

arXiv:2203.08826

#### Benchmark library: https://github.com/qiboteam/qibojit-benchmarks



### Scaling qubits simulation with QiboTN



#### Major features:

- Tensor Network and MPS simulation.
- Probability, shots, state reconstruction.
- Supports CPU and GPU.
- MPI multi-node support.
- Better memory footprint scaling.
- Optional cuQuantum integration.

# Quantum Hardware Control and Calibration



### From gates to pulses

arXiv:2308.06313

Given a general single-qubit gate it is possible to decompose it in  $R_X$  and  $R_Z$  gates:

$$U_3(\theta,\phi,\lambda) = R_Z(\phi)R_X\left(-\frac{\pi}{2}\right)R_Z(\theta)R_X\left(\frac{\pi}{2}\right)R_Z(\lambda)$$

From the level of pulses:

- an  $R_X$  is a Gaussian pulse calibrated by Rabi experiment,
- an  $R_Z$  is a change in the virtual phase of the pulses,
- an  $M_Z$  is a rectangular pulse calibrated by readout optimization routines.



How an RX and measurement gate is performed at the pulses level on a qubit.

### How to control qubits? Qibolab



#### Major features:

- Pulse and pulse sequence API.
- Extensible API to drivers of control instruments.
- Hardware sweeps for faster execution of calibration routines.

E

arXiv:2308.06313

- Transpilers from arbitrary circuits to pulses.
- Integration with QuTiP for platform emulation.



### Benchmarking instruments performance

arXiv:2308.06313

13

We compare the ideal pulse sequence execution performance to instruments execution duration.



Zurich Instruments (ZI), Quantum Machines (QM), QBlox and RFSoC FPGA (Qibosoq+QICK).

### **Pulse-calibration and experiments**

## arXiv:2303.10397



14

### Calibration routines with Qibocal

### arXiv:2410.00101





### Full-stack software for self-hosted quantum devices

#### Storage of platform calibration parameters OPU Execute calibration routines >Oibocal - 111 Collect results Oibolab </> Qibo -----III -Execute algorithms on calibrated devices

Schematic representation of Qibocal's role within the Qibo framework.

arXiv:2410.00101

# Outlook

## Outlook

Why **Qibo**?

- 1. Open-source from control electronics drivers to quantum algorithms (full-stack).
- 2. Decentralized development model and a diversified funding strategy.
- 3. New opportunities of software integration with research institutions.

| Adoption           | Integration                 | QCaaS                       |
|--------------------|-----------------------------|-----------------------------|
| Use Qibo as it is. | Qibo as 3rd party software. | Cloud access based on Qibo. |









### Recent case studies using Qibo in industry and academia

- Adoption (from 2020):
   TII (UAE), NQCH (Singapore), NQSTI (Italy),
   QπAI (India): default quantum OS for quantum hardware.
- Integration (from 2022):
  - FNL (USA): Qibo as front-end of QICK box electronics.
  - QIQ-B / QuEL Inc. (Japan): new drivers in Qibolab.
- QCaaS (from 2024):

Cloud access, management and hybrid HPC infrastructure to quantum hardware operated by Qibo.

