







Towards broadband quantum-limited **superconducting parametric amplifiers** for qubit read-out

Federica Mantegazzini

Fondazione Bruno Kessler (Trento) Centre for Sensors and Devices







First NQSTI Congress, 15-16 January 2024, Rome









# A joint effort towards Qubit Integration





Credits: IBM

First NQSTI Congress 15-16 January 2024, Rome









# A joint effort towards Qubit Integration



Crucial requirement for qubit read-out: minimise noise and maximise linear gain of first amplification stage

Friis formula: 
$$T_{N,tot} = T_{N,1} + \frac{T_{N,2}}{G_1} + \frac{T_{N,3}}{G_1G_2} + \dots + \frac{T_{N,k}}{G_1G_2 \dots G_{k-1}}$$

Credits: IBM

First NQSTI Congress 15-16 January 2024, Rome









### **Superconducting Parametric Amplifiers**

Parametric amplification = wave-mixing process based on parametric non-linearity

# **Superconducting amplifiers** for microwave amplification:

(Ideally) non-dissipative

Ultra-low-noise amplification

 $\rightarrow$  Quantum noise limit:  $T_{\rm N}/f \sim h/2k_{\rm B} \sim 25 \text{ mK/GHz}$ 











# **Different approaches: JPAs vs TWPAs**

Increasing signal gain by *increasing* the interaction time in the non-linear medium



#### **Resonator-based** paramp:

Josephson Parametric Amplifiers JPAs



Long **non-linear medium**:

Travelling Wave Parametric Amplifiers TWPAs



Larger bandwidth

 Larger saturation power

First NQSTI Congress 15-16 January 2024, Rome









Detector Array Readout with Traveling Wave AmplifieRS

# **KI-TWPA design**

- Non-linear element: kinetic inductance of NbTiN film
- Artificial transmission line: increased interaction time
- Unloaded/loaded segments: phase matching
  - $\rightarrow$ Suppresses shock-waves  $\rightarrow$ exponential gain











# Calibrate film thickness h vs kinetic inductance L



#### $\rightarrow$ Use film thickness h as $L_0$ tuning parameter

**First NQSTI Congress** 15-16 January 2024, Rome









### **Measurement of the kinetic inductance**



#### Comparison with simulation



Discrepancy of ~10%
(within stat./syst. uncertainties)

First NQSTI Congress 15-16 January 2024, Rome











PFIB-SEM Helios 5 ThermoFisher Scientific Helios 5 CXe

First NQSTI Congress 15-16 January 2024, Rome Federica Mantegazzini Fondazione Bruno Kessler CSN5 Ricerca Tecnologica

GA ID: 101027746









### **KI-TWPA** prototype characterisation



First NQSTI Congress 15-16 January 2024, Rome









### **KI-TWPA** prototype characterisation



First NQSTI Congress 15-16 January 2024, Rome









### **KI-TWPA** prototype characterisation



First NQSTI Congress 15-16 January 2024, Rome









### **Superconducting amplifiers beyond amplification**



First NQSTI Congress 15-16 January 2024, Rome









### **JPAs as Sources of Entangled Photons**





#### JPA response to applied pump drive ( $f_p = 7.26$ GHz)



First NQSTI Congress 15-16 January 2024, Rome









# **Conclusion & Outlook**

- Crucial stage in the qubit read-out chain: Amplification
- TWPAs can reach quantum-limited and broadband amplification
- First half-size KI-TWPA prototypes have shown promising results

#### Next steps

- new layout: inverted microstrip
  - $\rightarrow$  new design and new materials
- design and microfabricate a full-size prototype
- develop accurate characterisation tools, e.g. for noise measurements
  - $\rightarrow$  planning an *interspoke collaboration* with Martina Esposito (Spoke 5)











### **BACK UP SLIDE: Noise measurement**



