WACQT Wallenberg Centre for Quantum Technology

Building a full-stack quantum computer in an academic environment

Lessons from the WACQT center, Sweden

Simone Gasparinetti

Principal Investigator, WACQT Assistant Professor, Chalmers University of Technology

My research group

Superconducting circuits for

- Quantum computing with bosonic modes
- Quantum thermodynamics
- Quantum-enabling technologies

WACQT

Microtechnology and Nanoscience

Department

Our research

Some research highlights

Quantum state preparation in 3D cavities PRX Quantum **3**, 030301 (2022)

Autonomous qubit reset with quantum absorption refrigerator arXiv:2305.16710

Control of a bosonic mode via native cubic interactions arXiv:2308.15320

Atom-photon bound states in JJ resonator arrays PRX 12, 031036 (2022)

Qubit meas&control with integrated RF-SoC platform Rev Sci Instr **93**, 104711 (2022)

Low-pass filter for quantum computing applications IEEE TMTT 1 (2023), patent pending

Outline

- Overview of WACQT
- Building a full-stack quantum computer at WACQT
- WACQT's 25-qubit quantum processor
- Personal reflections

Wallenberg Centre for Quantum Technology

Main goals i) To build a broad competence base in Sweden for Quantum Technology ii) To build a quantum computer based on superconducting circuits

Two partsCore project on quantum computingExcellence program including all of Quantum Technology

Universities: Chalmers, KTH, Lund, SU, LiU, GU 120+ people involved

 Duration:
 12 years, (3+4+3+2 years)

 Started Jan 1, 2018
 2018
 2021
 2025
 2028
 2030

Involving industry Big industry for applications + SME for enabling technology

Funding: 1400 MSEK (~120 MEUR) from KAW foundation + Universities + Industry partners

WACQT Wallenberg Centre for Quantum Technology

Wallenberg Centre for Quantum Technology

Core project and Excellence program

WACQT total ~140 people

Graduate School Guest researcher program Industry collaboration

Total over 12 years:85 PhD students70 Postdocs14 Assistant professors

Quantum industry related to WACQT

7 industrial PhD students

Technology enablers

Spectracure

Intermodulation Products

Low Noise Factory

ConScience

RISE/SP

3 industrial PhD students

Spin-off companies

Deep Light Vision AB Atlantic Quantum AB ScalinQ Sweden Quantum AB quCertify WACQT-IP

All started within the last 2 years

Quantum technology testbed(s)

Quantum algorithm testbed (for researchers and big companies; start in 2025)

- User facility for testing quantum algorithms
- Dedicated cryostat with an operational 25 qubit processor
- Upgrading to 40 qubits later when WACQT-platform after 4 years

Quantum algorithm help desk (start in 2024)

Quantum hardware testbed (for SMEs and spin-offs; start in 2024)

- User facility for testing quantum hardware at cryogenic temperatures
- Dedicated (smaller) cryostat
- Expertise on cryogenics and quantum technology

Operated by Next Labs, a company owned by the Chalmers Foundation

WACQT Wallenberg Centre for Quantum Technology

The WACQT Quantum Computer

- A Swedish quantum computer based on superconducting circuits
- Application to use cases within optimization and quantum chemistry
- Full stack HW and SW development

The 25-qubit platform

WACQT has a full-stack approach

Quantum algorithms Quantum compiler Control system Classical hardware Qubit

Engineering needs + opportunities for science at each layer, and their interface!

- Coherence + reproducibility
- Gates
- Readout
- 3D integration & packaging
- Crosstalk
- Control systems
- Software & automation
- ... And many more

Experimental team working on core project

Pls Researchers	Jonas Bylander Per Delsing Giovanna Tancredi Anita Fadavi Robert Rehammar Darvoush Shiri	Postdocs	Sahara Hejazi Tangyou Huang Anna Kepiklova Sumit Kumar Eleftherios Moschandreou Tom Vethaak
Senior res. engineers	Abdullah-al Amin (SW) Miroslav Dobsicek (SW) Marcus Rommel (Fab)	PhD students	Anuj Aggarwal Janka Biznárová Liangyu Chen Christian Krizan Hang-Xi Li Amr Osman Hampus Rehnberg Nilsson Emil Rehnman Christopher Warren
Research engineers	Martin Ahindura (SW) Nicklas Botö (SW) Stefan Hill (SW) Andreas Nylander (Fab) Krishnasamy Subramaniam		
Lab Manager	Olga Yuzefovych	MS	Maurizio Toselli Halldór Jakobsson

One qubit

- Conventional transmon qubits, Al on Si
- Constantly improved thanks to material science + process development

Two qubits

Single-qubit gates in 10-20 ns Two-qubit gate in ~ 300 ns Readout 1-2 us (now 180 ns)

- Frequency-fixed qubits, frequency-tunable coupler
- Two-qubit gate (CZ) by parametric drive on coupler
- QAOA algorithm implemented on this device

McKay, PRAppl. 6, 064007 (2016) Bengtsson, PRAppl. 14, 034010 (2020)

• • •

From 2 to 5 qubits

As we scale up, there is many more things to take care of!

Connectivity Frequency collisions Crosstalk Reproducibility

25-qubit processor: avoiding collisions

Tileable 4 x 4 pattern

Two groups of qubits with different anharmonicities

Our standard deviation of qubit frequencies is 40 MHz

Osman, PRR 5, 043001 (2023)

25-qubit processor: 3D integration

Conceptual architecture

Flip-chip module **TSVs** stand

qubit chip

Flip-chip module

control chip

stand

off

Quantum chip: qubit array ۲ and couplers

In

- **Control chip**: measurement & control lines
- **Bump-bonded module** ۲

Features

• Scalable

airbridge

Highly connected •

In

off

<700µm

- Addressable •
- Crosstalk-mitigated ٠
- Packaged •
- Standardized •

Kosen et al., Quant Sci Tech 7, 035018 (2022)

<700µm

5-10µm

25-qubit processor: physical design

Device layout (qubits, control lines, read-out)

Photo of 25 qubit chip

25-qubit processor

Made at Chalmers, bonded at VTT, measured at Chalmers

- 25 qubits in a 5 x 5 grid •
- Pairwise coupled ٠
- CZ parametric gates •

- T₁ > 90 μs
- F(1Q) > 99.9% •
- F(CZ) > 98.6% •

Investigating cross-talk

Superconducting tunnels to shield all the control lines on the C-chip

- XY on-resonant crosstalk ~ -40 dB
- DC flux crosstalk below ~ 0.1%

This is really good! Thanks to flip-chip environment, return current engineering, magnetic field shielding via airtunnels

Kosen et al., in prep.

Software stack

WACQT Wallenberg Centre for Quantum Technology

Software stack – automated tune-up

Single-qubit simultaneous calibration

15 qubits

- Resonator spectroscopy
- Qubit spectroscopy
- Rabi (f01)
- Ramsey (01)
- DRAG optimization (amplitude and derivative)
- Resonator spectroscopy (with qubit in |0>, |1>)
- Qubit Spectroscopy (f12)
- Rabi (f12)
- Ramsey (f12)
- Resonator spectroscopy (with qubit in |0>, |1>, |2>)

Single-qubit simultaneous calibration

15 qubits

- Resonator spectroscopy
- Qubit spectroscopy
- Rabi (f01)
- Ramsey (01)
- DRAG optimization (amplitude and derivative)
- Resonator spectroscopy (with qubit in |0>, |1>)
- Qubit Spectroscopy (f12)
- Rabi (f12)
- Ramsey (f12)
- Resonator spectroscopy (with qubit in |0>, |1>, |2>)

Single-qubit simultaneous calibration

15 qubits

- Resonator spectroscopy
- Qubit spectroscopy
- Rabi (f01)
- Ramsey (01)
- DRAG optimization (amplitude and derivative)
- Resonator spectroscopy (with qubit in |0>, |1>)
- Qubit Spectroscopy (f12)
- Rabi (f12)
- Ramsey (f12)
- Resonator spectroscopy (with qubit in |0>, |1>, |2>)

Single-qubit simultaneous calibration

15 qubits

- Resonator spectroscopy
- Qubit spectroscopy
- Rabi (f01)
- Ramsey (01)
- DRAG optimization (amplitude and derivative)
- Resonator spectroscopy (with qubit in |0>, |1>)
- Qubit Spectroscopy (f12)
- Rabi (f12)
- Ramsey (f12)
- Resonator spectroscopy (with qubit in |0>, |1>, |2>)

Single-qubit simultaneous calibration

15 qubits

- Resonator spectroscopy
- Qubit spectroscopy
- Rabi (f01)
- Ramsey (01)
- DRAG optimization (amplitude and derivative)
- Resonator spectroscopy (with qubit in |0>, |1>)
- Qubit Spectroscopy (f12)
- Rabi (f12)
- Ramsey (f12)
- Resonator spectroscopy (with qubit in |0>, |1>, |2>)

Software stack: connecting to HPC

Live demonstration at the EU Digital Assembly 2023 https://www.youtube.com/watch?v=52vOdakwT1Q (WACQT Demo: 5h 9min)

Miroslav Dobsicek

- Online remote cloud access
- HPC-QC integration with Lumi
- HPC pre- and post-processing capabilities for quantum jobs
- Simple demonstration of QML

Still so much to do...

Improving qubits

Understand Two-level Fluctuators (TLFs) Optimize substrate materials Improve reproducibility Thermalize qubits (and TLFs)

Develop new types of qubits Implement error correction

System integration

Packaging at mK temperatures, 3D integration Microwave solutions for operating a large-scale quantum computer

Software for quantum computers

Quantum computer operation Quantum algorithms for real world use cases

What have we learned?

Can one build a quantum computer in academia? Yes, but beware:

- High employee turnover! Work on shared documentation and onboarding.
- Hire permanent researchers if you can. Better if they have industry experience.
- Science or engineering? Do it together. Look for inventive tweaks as you catch up.
- Get the theorists on board. Develop a deep mutual understanding.
- Software is very important! Easy to underestimate for (some) physicists
- Enabling companies greatly help. However, promiscuity can cause problems. Set clear boundaries.
- Working with user companies requires patience but is worth it. In Sweden, moderate interest.

Quantum computing still needs major breakthroughs – likely from academia

Thank you!

More questions? simoneg@chalmers.se