

NQST National Quantum Science and Technology Institute

NQSTI The National Quantum Science and Technology Institute

https://nqsti.it/

NQSTI National Guantum Science and Technology Institute

20 Institutions

Researchers 322

MUR funding **116 M€**

Open calls 23 M€

NQSTI geographical distribution (today)

and Tech

Hub

- Limited reliability consortium based in Rome at the CNR
- all participants in the project and winners of the cascade calls are invited to be members

Spoke

- 1. Università di Pavia
- 2. Università di Camerino
- 3. Consiglio Nazionale delle Ricerche
- 4. Università di Roma Sapienza
- 5. Scuola Normale Superiore
- 6. Università di Milano Bicocca
- 7. Fondazione Bruno Kessler
- 8. Consiglio Nazionale delle Ricerche
- 9. Università di Catania

NQSTI project structure

QST Theoretical Foundations and Novel Paradigms

Spoke 1 (M. Liscidini) and 2 (D. Vitali)

Technology Platforms for QST

Spoke 3 (F. Cataliotti), 4 (F. Sciarrino), and 5 (F. Beltram)

Integration, System Architectures Spoke 6 (G. Gorini) and 7 (A. Simoni)

Technology Transfer; Education and Outreach Spoke 8 (G.R. Greco) and 9 (E. Paladino)

CEO Isabella D'Apolito

(New board of directors to be appointed soon)

Industrial Advisory Board Representatives from participating companies MIMIT Confindustria HPC ICSC

Scientific Advisory Board

Collaborations created by NQSTI activities

and Technology

Regarding **information processing and communication** with quantum systems, the spoke aims at:

- 1. Consolidating the foundations of processes and protocols at the basis of quantum information (QI) and quantum technologies (QT).
- 2. A detailed exploration of quantum phenomena, concepts, and systems.
- 3. Identifying new potentials of development for QI and QT.
- 4. Specifying concepts and protocols for the available technological platforms.

Up to now **more than 80 papers** (arXiv preprints or published)

A1.1	Quantum nonlinear dynamics
A1.2	Interfacing different quantum systems
A1.3	Complex quantum systems
A1.4	Open quantum systems
A1.5	Advanced quantum algorithms and protocols
A1.6	Artificial Intelligence against quantum noise
A1.7	New approaches for storage/processing quantum information
A1.8	Quantum resources

Spoke 2 investigates driven-dissipative and complex many-body systems, assessing their ability to provide benefit for quantum information processing, quantum simulation, and quantum sensing.

Special attention is paid to **novel materials, metamaterials, and novel phases of matter**. We investigate the energetic aspects of quantum technologies, in order to establish their **energetic footprint**, and make them sustainable.

We study **decoherence sources**, and design **quantum control techniques to harness their deleterious effects**. We investigate **quantum error correction**, also going beyond the qubit paradigm, open-loop and closed-loop schemes, applying them also to enhanced quantum sensing and thermodynamics.

Up to now **more than 80 papers** (arXiv preprints or published)

Spoke 2 - Foundations and architectures for quantum sensing, metrology, novel materials, and sustainability

A2.1	Innovative quantum systems and metamaterials
A2.2	Emergence of collective properties in quantum matter and devices
A2.3	Complex synthetic quantum networks for transport of information and sensing
A2.4	Quantum thermodynamics and quantum devices for the production, storage, and transfer of energy
A2.5	Assessment and strategies for reducing the energy consumption in quantum information processing
A2.6	Enhanced sensing and metrology and other quantum technologies including those based on many-body effects, quantum phase transitions, chirality and nonreciprocity
A2.7	Quantum control for improving quantum technologies
A2.8	Platform-specific modeling of decoherence for the simulation of quantum architectures in realistic scenarios
A2.9	Encoding beyond the qubit for quantum information processing

Spoke 3- Atomic, molecular platform for QTs

Spoke 3 will exploit neutral atoms, molecules and ions to quantum engineer systems from first principles, with thorough control of interactions, particle statistics, system dimensionality, and even topological or transport properties all the way to the single particle level.

- Development of advanced homodyne detection methods through the optical cavity.
- Exploration of **noise and decoherence** sources and their mitigation.
- Advanced coherent control of atomic internal and external dynamics.
- Atom interferometry on a single-photon transition and upgrade of the existing apparatus towards an atomic fountain with significant metrological gain beyond the Standard Quantum Limit.

Spoke 3 - Atomic, molecular platform for quantum technologies

A3.1	Development of novel atomic/molecular systems to extend coherence time
A3.2	Development of novel hybrid atomic systems
A3.3	Novel atom interferometry beyond the classical regime
A3.4	Optimized approaches for interfacing quantum optical fields and macroscopic atomic ensembles
A3.5	Enhancing State Detection
A3.6	Techniques for coherent quantum state control and entanglement engineering

Spoke 4 - Photonic platform for quantum technologies

	A4.1	Semiconductor based sources of single/two photon quantum states
	A4.2	Development of scalable single photon sources based on molecular systems or 2D materials
SOURCES	A4.3	Development of integrated non-classical light sources with non-linear material
	A4.4	Heterostructured quantum source
	A4.5	Manipulation of photonics quantum states via integrated photonics
MANIPULATION	A4.6	Innovative free-space methodologies for quantum photonics manipulation
MANIPULATION	A4.6 A4.7	Innovative free-space methodologies for quantum photonics manipulation Manipulation of photonics quantum states via nonlinear optical systems
MANIPULATION		

Spoke 4 aims to develop all **technologies** needed **to generate** in either single photon or multi-photon configurations, **manipulate**, and **detect quantum states of light** across a broad range of frequencies (from the visible to the far-infrared).

Passive and active integrated optical components for manipulating/modulating/switching the generated quantum states of light or for probing/imaging quantum properties at the micro- and nanoscale will be also devised to complement this groundbreaking program of technological development.

Photonics platform

A5.1	Tunable emerging electronic configurations in hybrid/topological systems
A5.2	Novel nanomaterials for hybrid architectures
A5.3	Phase-sensitive architectures
A5.4	Quantum energy management
A5.5	Tailored defects and molecules for QT
A5.6	Quantum interfacing, control and readout
A5.7	Innovative characterization techniques to probe quantum nature and performance

NQSTI National Quantum Science and Technology Institute

ELECTRON-BASED QS&T

- Emphasis on hybrid material systems
- Hybrid physical systems (QHE/S, quasiparticle hybridization)
- New architectures and functional modules
- Pursue compatibility with existing (opto)electronics technology

Calculations of an electron-photon entangled state in **Quantum-TEM** based on the density matrix representation. The electron amplitude probability is shown in the energy-phase parameter space after two electron-photon interaction points with a two-level quantum system in a metastable superposition state Micrograph of an Al SQUID embedding 3D Al nanobridges. These SQUIDs implement a supercurrent diode, a nonreciprocal device possessing different critical currents in the two directions.

Sketch of the structure of Cu-VO bisporphyrinato complex with resulting energy differences between states **involving control (red) and target qubit (blue and green)** electronic spin transitions: In the bottom left panel the surfaces of magnetic orbitals on the two centers are reported.

Spoke 6 - Integration

6.1 Integration of atomic circuits

• Implementation of atomic circuits to resemble electron-based networks of different classes of conductors, semiconductors, superconductors or magnets

6.2 Integration of photonic devices

• Implementation of chip-size packaged devices with integrated photon sources and detectors for quantum simulation and quantum key distribution

6.3 Integration of electronic quantum devices

• Implementation of superconducting quantum gates and quantum networks integrating devices with read-out and control systems for sensing and simulation

6.4 Integration of inter-platform quantum devices

- Demonstration of light-atom interfaces at telecom wavelengths with integrated entangled photon sources
- Multiplexed arrays of superconducting SPD with number resolution for metrology and simulators
- 2D/3D hybrid quantum memories (superconducting qubits coupled to spin ensembles or EM cavities)
- Generation of two-mode squeezed vacuum states for microwave quantum illumination

Travelling Wave Parametric Amplifiers

Prototype designed by Unimib in collaboration with INFN and produced at FBK within NQSTI – Spoke 6

- TWPAs allow for phase-insensitive amplification with high gain values (~20 dB) and broad bandwidths (~3 GHz) and noise at the quantum limits at cryogenic temperatures;
- Typically used for multiplexing readout of qubit, detectors, and cavities;
- Suitable for any application that needs high gain and low noise in the microwave regime;

Space Applications

- TWPA showed impressive performance operating at 4 K;
- KI-TWPA can operate at various temperature stages (from 10 mK to 4 K) thus enabling applications even in space environments;
- KI-TWPA can replace noisy solid-state amplifiers in communication satellites, space observatories, and space probes

Quantum Communication & Quantum Radar

Quantum communication

- Quantum resources are known to be susceptible to noise and losses;
- In order to finalize the prepare-and-measure the key distribution protocol the used linear amplifiers requires a remarkable quantum efficiency;
- TWPAs are potentially able to approach the quantum-limited regime in a broad bandwidth providing a high quantum efficiency;

Quantum Radar

- Quantum entanglement can enhance the task of object detection in the presence of a strong background noise;
- This demands the realization of a reliable source of continuous-variable entangled state in the microwave range
- TWPAs are optimal candidate as entangled radiation sources for quantum-enhanced detection of objects in the microwave regime;

Spoke 7 - Complete Quantum Systems

A7.1	Imaging Systems
A7.2	Point Sensing Systems
A7.3	Communication & IoT Systems
A7.4	Simulation Systems

A7.2 - Point Sensing Systems

Development of spectroscopy-based sensing systems for biomedical and environmental inspection. (UniBA, FBK)

- <u>Small sensing module</u> and sample volume (a few cm³)
- <u>Wavelength independent</u>
- Optical detector is not required
- Wide dynamic range
- Immune to environmental acoustic noise
- Acoustic micro-resonator(s) to enhance the QEPAS signal

Appl. Phy. Rev. 5, 011106 (2018) Appl. Phy. Rev. 8, 041409 (2021) Anal. Chim. Acta 1202, 338894 (2021) (**3 patents**)

Enable the realization of highly sensitive trace gas sensors, portable for in situ & real time detection

A7.3 - Communication & IoT Systems

A7.3.1: Development of QKD links with integrated photonics

A7.4 - Simulation Systems

Development of an optical quantum simulator (FBK, U.PV, CNR, U.MIB, U.SAP)

Several options will be considered for the input/detection combination (non-gaussian inputs/single photon detection, squeezed input/#resolving detector)

Several degrees of freedom will be considered for the unitary transformation.

Solution to mathematical problems (search on graphs), simulation of molecular spectra...

Spoke 8 - Technology Transfer

	Spoke 8 Technology Transfer							
A8.2	NQSTI-industry joint laboratories and prototyping Goal: to favor the exploitation of our laboratories for the strengthening of the innovation capability, process characterization, and product certification	WG1	Market trends and use Cases Goal: to actively identificate market trends and use cases; to promote QT to companies					
A8.3	Open calls for industrial collaborations Goal: to favor the penetration of QST know-how into the existing R&D of large companies and SMEs through project-oriented open calls based on a		Intellectual Property and Trade <i>Goal:</i> to boost licensing activities and to create Italian Intellectual Property Portfolio					
A8.4	QST Incubator Goal: to support for the creation of new spin-offs	WG3	Standards <i>Goal:</i> to make NQSTI a key player in the identification of international standards					
	and start-ups with and by project participants. NQSTI will provide mentoring, legal and administrative support	WG4	Strategic Industry Roadmap & Technology Intelligence <i>Goal:</i> to monitor the status and progress of QT in Europe and worldwide					

NQSTI - SPOKE 9 Education and Outreach

Development of **quantum-technology-oriented education and training** from high-school to higher education and training at professional level (**Education**).

Raise awareness of Quantum Science and Technologies with companies and professional organizations and, more generally, with civil society. (Outreach).

The planned actions are in line with and will contribute to the European *QTEdu* experience. Wide access to the QST field, taking into account gender equality and diversity, will be guaranteed.

Coaching of the QT-workforce

- Identification of standards for implementing educational strategies in QT enabling the italian community to efficiently develop, test and apply materials for teaching QT in universities and high schools, for industry workforce, and to the general public.
- **Minors in QT** for **non physicists** providing the core competence in quantum technology (for students holding at least a bachelor degree)
- I and II level one year professional Masters in order to form the reference figures of the Competence Framework for QT, in cooperation with industries. (open calls, the bulk of funds will be devoted to initiatives in the southern Italian regions.)
- Within existing Masters, establishment of **student's specialization internships** in dedicated academic/industrial laboratories.

- Seminars of QT for undergraduates, PhD students and young researchers with a scientific background.
- National schools for PhD students and young researchers on the QST-related activities (spokes 1 7) with the participation of international speakers also from industry.
- Organization of summer schools and specific courses on QT for secondary school students.

Training courses for interested industry employees and for high-school teachers.

- Short (2/3 days) course to get a basic "general QT awareness" certificate, repeated twice a year.
- Brief (3 or 4 weeks) course to get a "Quantum Technology Strategist" certificate, once a year.
- Establishment of **training courses for high school teachers** on QT topics in line with the MUR "piano nazionale di formazione per il personale della scuola".

DISSEMINATION

Development at the Italian level of standard communication and outreach channels as well as specialized and broad audience publications.

- Participation and support to European outreach initiatives on QTs.
 - World quantum day \rightarrow Italian Quantum Weeks
 - European Research Night
- Organization of outreach events for the civil society, for instance "quantum art" and "quantum music" interactive exhibitions or plays and short movies on QT.

NQSTI website https://nqsti.it/

NQSTI has been designed for favouring successful **Italian participation to European** and international **programs**.

NQSTI@BiQuTe

First example: Italian National contribution (1 M€) to the 2023 QUANTERA Call

(but see more in Francesco Cataliotti's talk)

and with the just launched (September 2023)

SISTEQ (Società Italiana di Scienze e Tecnologie Quantistiche), which is is just to start its activities and it is a complementary action involving all "quantum" people, from enthusiasts to different levels of stakeholders.

